AIS Complex Analysis (2008)

Venue: Pune Univ. & BIM
Dates: 5 June-2 July, 2008

 

Convener(s) Speakers, Syllabus and Time table Applicants/Participants

 

School Convener(s)

Name S. A. Katre D. Thakur
Mailing Address

University of Pune

University of Arizona

Advanced Instructional School on Complex Analysis (AIS-Complex) is being organised in Pune in June 2008 on behalf of NBHM.

 

Members of the Local Organising Committee
Bhaskaracharya Pratishthana: C. S. Inamdar (Custodian), R. R. Simha, Anandateertha Mangasuli

University of Pune: B .N. Waphare (HOD, Maths.), S. A. Katre, H. Bhate

 

Speakers and Syllabus 

Speakers

  • A. R. Shastri: See the detailed syllabus
  • Dinesh Thakur: See the detailed syllabus
  • A. Mangasuli:
    1. Covering space theory (3 lectures)
    2. De Rham Cohomology and Hodge Theory (An overview) (1 lecture)
  • Ravi Raghunathan: The convexity principle and applications to functional analysis and number theory.
  • R. R. Simha: Riemann Surfaces
  • S. A. Katre: Doubly periodic functions
  • Kaushal Verma: (6 lectures)
    1. Statement of Picard type theorems on the plane.
    2. Definition of Fatou-Bieberbach domains, their properties and the theory of normal forms for local holomorphic automorphisms with fixed points.
    3. Fatou and Bieberbach's construction.
    4. Theorems of Rosay-Rudin for constructing Fatou-Bieberbach type domains.
    5. Examples and connections with complex dynamics in higher dimensions.
  • Ravi Kulkarni:
    1. Geometry of Complex Numbers
    2. Branched Covering Space Theory
    3. The modular Group
  • S. R. Ghorpade: Hardy-Ramanujan-Rademacher formula for partitions
  • Ajit Iqbal Singh: Weierstrass' Product Theorem and Mittag-Leffler's Theorem from Complex-valued to the Banach Algebra set-up.
    Please refer to the link: The Mittag-Leffler Theorem: The Origin, Evolution, and Reception ...
  • Sanjay Pant: Complex dynamics.

Detailed Syllabus (to be updated)


 1  Contour Integration  1
1.1  Path Connectivity . . . . . . . . . . . . . . . . . . . . . . 1
1.2   Definition and Basic Properties of Contour Integration . . . . . . . 6
1.3  Existence of Primitives . . . . . . . . . . . . . . . . . . . . . . . 17
1.4  Cauchy-Goursat Theorem . . . . . . . . . . . . . . . . . . . . . . 21
1.5  * Cauchy’s Theorem via Green’s Theorem . . . . . . . . . . . . . . . 27
1.6   Cauchy’s Integral Formulae . . . . . . . . . . . . . . . . . . . . . . . . 30
1.7  Analyticity of Complex Differentiable Functions . . . . . . . . . . . . . 33
1.8   A Global Implication: Liouville . . . . . . . . . . . . . . . . . . . . 37
1.9   Mean Value and Maximum Modulus . . . . . . . . . . . . . . . . . . 39
1.10 Miscellaneous Exercises. . . . . . . . . . . . . . . . . . . . . 41

 2   General Form of Cauchy’s Theorem   45
2.1   Winding Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2   Homotopy and Simple Connectivity . . . . . . . . . . . . . . . . . 51
2.3  Homology Form of Cauchy’s Theorem . . . . . . . . . . . . . . . . 55
2.4  Miscellaneous Exercises . . . . . . . . . . . . . . . 60

 3 Convergence in Function Theory  63
3.1   Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2   The Exponential and Trigonometric Functions . . . . . . . . . . . . . 76
3.3   Sequences of Holomorphic Functions . . . . . . . . . . . . . . . . . 85
3.4 Convergence Theory for Meromorphic Functions . . . . . . . . . . . . . 89
3.5 Partial Fraction Development of π cot πz. . . . . . . . . . . . . . . . . . 94
3.6 Infinite Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.7 Runge’s Approximation Theorem . . . . . . . . . . . . . . . . . . . . . . 104

 4   Normal Families and Conformal Mappings 115
4.1  Metric on Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.2   Normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.3   Equicontinuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.4   Families of Meromorphic Functions . . . . . . . . . . . . . . . . . . . . . 121
4.5   Uniformization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.6   Miscellaneous Exercises . . . . . . . . . . . . . . . . . . . . . . 128

 5 Harmonic Functions 129
5.1   Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.2   Application to Potential Theory . . . . . . . . . . . . . . . . . . . . . . . 138
5.3   Mean Value Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.4   Harnack’s Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.5   Subharmonic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.6   Perron’s Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.7   Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.8   Multi-connected Domains . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.9   Miscellaneous Exercises . . . . . . . . . . . . . . . . . . . . . . 169

 Click here to download time table


Selected Applicants

 


Sr. No.

Name

Institute

Place

1.

Dr. Anuradha Narasimhan

 

Pune

2.

Mr. Jagmohan Tanti

Bhaskaracharya Pratishthana

Pune

3.

Dr. (Ms) Anubha Gupta

NSIT

Delhi

4.

Mr. Priyabrot Gochhayat

Derhampur University

Orissa

5.

Mr. Sunil Hans

Jamia Millia Islamia

New Delhi

6.

Mr. Naresh Singh

Jamia Millia Islamia

New Delhi

7.

Mr. Jayanta Borah

NERIST, Nirjuli

Arunachal Pradesh

8.

Dr. Vishnu Narayan Mishra

S.V.N.I.T.

Surat

9.

Mr. Pradeep Malik

I.I.T., Roorkee

Roorkee

10.

Mr. Dinesh Kumar Keshari

I.I.Sc.

Bangalore

11.

Mr. Umesh

Rajdhani College

Delhi

12.

Mr. Sourav Pal

I.I.Sc.

Bangalore

13.

Ms. Shreedevi K. Masuti

I.I.T. Bombay, Powai

Mumbai

14.

Mr. Jyoti Prakash Saha

ISI, Bangalore

Bangalore

15.

Mr. Devendra Shirolkar

University of Pune

Pune

16.

Mr. Shiv Prakash Patel

I.I.T. Bombay, Powai

Mumbai

17.

Ms. Rupali Khedkar

I.I.T. Bombay, Powai

Mumbai

18.

Mr. Sanjay Kumar

I.I.T. Bombay, Powai

Mumbai

19.

Mr. Bappaditya Bhowmik

I.I.T., Madras

Chennai

20.

Mr. Vikas Jadhav

Nowrosjee Wadia College

Pune

21.

Mr. Sahil Mhaskar

I.S.I.

Bangalore

22.

Ms. Arati d. Salunke

A. I. College

Pune

23.

Ms. Sonali V. Mandavkar

A. I. College

Pune

24.

Ms. Shraddha R. Natu

A. I. College

Pune

25.

Ms. Tejasvi R. Shinde

A. I. College

Pune

26.

Mr. Rohit D. Holkar

I.S.I.

Bangalore

27.

Mr. Saumitra Kulkarni

B.I.M.

Pune

28.

Mr. Ashwin Deopurkar

C.M.I.

Madras