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In this note we prove the well known theorem of Kronecker-Weber using
only ramification theory. The following steps are described in a series of
exercises in [1, pp. 125-127].

Kronecker-Weber Theorem.

Theorem : Every finite abelian extension of Q (field of rational numbers)
is contained in a cyclotomic field.
Proof : Let K be a finite abelian extension of Q with G = Gal(K/Q).

Step 1 : It is enough to assume that K is of degree p™ over Q for some
prime p. For if G is expressed as a direct product of its Sylow subgroups :

G= Sy x--- x5,

then fixed subfields k; (of K) with groups S, will generate K. If k; belongs
to a cyclotomic field Fj, for ¢ = 1,2,---,r; then K C 1 F5---F, C some
cyclotomic field. Hence we assume K = k; and [K : Q] = p™.

Step 2 : It is enough to assume that p is the only prime ramified in K.
Suppose ¢ € Z is a prime (other that p) which is ramified in K. Let E(-|-)
and e(-]-) denote the inertia group and the ramification index respectively.
Let U be a prime of K lying above g with e(U | q) = e. Now the higher
ramification group V(U | q) is a g—subgroup of a p—group G [1, page 121].
Hence |[V1(U | q)| =1 and |V/Vi| = e. Since G is abelian |Vy/V1| | (¢—1) [1,
page 124, Ex. 26(c)]. This gives e|(¢ — 1). Now there is a (unique) subfield
K1 C Q(¢) (where Q((y,) denotes the m-th cyclotomic field, i.e. (p, is a
primitive m-th root of unity) with [K; : Q] = e. Since e | p™ and q # p, q is
tamely ramified in both K7 and K. Now ¢ is totally ramified in Q({,) and
hence in K;. This gives that the ramification index of ¢ in K is also e. Let
Ui be a prime of L lying above U in K. Now, Gal(K/Q) and Gal(K;/Q) are
both p-groups and since Gal(L/Q) injects into Gal(K/Q)x Gal(K1/Q), it
is also a p-group. This shows that V1 (U; | ¢) is both a p-group and a g-group
implying that it is trivial. Thus E(U; | q) is cyclic. Let W be the (unique)
prime of K lying below U;. Hence, by restriction, E(U; | ¢) injects into
E(U | q) x E(W | q). All these three groups are cyclic and the last two have
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order e each. This shows that E(U; | ¢) is of order e. Thus the ramification
index of ¢ in L is also e. Since e(U; | q) = e(U | q) = e,e(Uy | U) = 1.
Let Lj be the inertia field of Uy, i.e., L; is the fixed field of E(U; | q).
Then for any field F' containing Li,U; N F' is totally ramified in L. Thus
for F' = L1 K, (U1 N F) is totally ramified in L. But F' D K, and therefore
6(U1 | (U1 ﬂF)) ‘ B(Ul | U) This implies E(Ul | U, ﬂF) =1.Thus U1 N F
is totally ramified as well as unramified in L implying F' = L. Hence if L
belongs to a cyclotomic field then since K1 C Q((,;), L will be a subfield
of a cyclotomic field. But K C L and hence K will be a subfield of some
cyclotomic field proving the theorem. Thus it is enough to replace K by
L1. But it is easy to see that all unramified primes of K are unramified in
L; and, in addition, ¢ is also unramified in L; (but ramified in K). Thus
continuing this process of reduction we can assume that there are no primes
other that p which are ramified in K. This finishes the proof of step 2.

Step 3 : Case(i) p=2, [K : Q] =2".

In this case 2 is totally ramified in K since otherwise no prime will be ramified
in the fixed field of E(U | 2) and this will imply, by [1,page 137, Cor.3], that
E(U | 2) = G. Thus 2 is totally ramified in K. Thus e(U | 2) =2". If m =1
then [K : Q] = 2 and K = Q[V/d] for some square-free integer d. But the
Disc(K/Q) = d or 4d. Since 2 is the only ramified prime of K, 2 is the only
possible divisor of d. Hence

K = Q[v2] or Q[v=2] or Q[V1].

All these fields are subfields of Q[(g]. Hence the theorem is proved in this
case. If m > 1 then consider L = Q({3m+2) N R, where R is the field
of real numbers. Then [L : Q] = 2™ and L C R. Hence L contains a
unique quadratic subfield, namely Q[v/2]. Hence Gal(L/Q) contains unique
subgroup of index 2. Thus L is a cyclic extension. Now consider the field
LK. Let p be the extension of o (where < o >= Gal(L | Q) to LK. Let F be
the fixed field of u. Since p restricted to L generates Gal(L/Q), FN L = Q.
If [F: Q] > 2 then FNR # Q and it will contain Q[v2] C L but FNL = Q.
Hence [F: Q] < 2. If [F : Q] = 2 then F = Q[v/—2] or Q[i] and both are
contained in Q[(g]. Thus K C LK = FL C Q((ym+2) and the theorem is
proved. If F' = Q then < p >= Gal(LK/Q) and since

Gal(LK/Q) — Gal(L/Q) x Gal(K/Q),

order of any element of Gal(LK/Q) < lem (| Gal (L/Q) |,| Gal (K/Q) |)
= 2™, Thus 2™ < [LK : Q] < 2™. Hence L = LK implying K C L C
Q[¢am+2]. Thus the theorem is proved in this case also.
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Case(ii) p is odd and [K : Q] = p™.
Consider the case m = 1. Hence K is of degree p over Q and p is the only
ramified prime in K. Thus if U is the prime of K lying above p then
e(U|p)=p.
Claim : diff(R/Z) = U*P~2) where R is the ring of integers of K.
Proof : Let 7 € U — U? then 7 satisfies a monic irreducible polynomial over
Z, say,

f(x) =2 +ap_ 12?7t + - + ao.
Let ¥y be the valuation corresponding to the DVR Ry. Then dy(n) = 1
and since UP = pR, Jy(p) = p. Now the coefficients a; are symmetric

polynomials in o7, o € Gal(K/Q) and ¥y (o) = 1, Vo € Gal(K/Q). Hence
Yy (a;) > 1 and hence p | a;. But a9 = £[][(o7) and hence ¥y(ag) = p. Now
in the expression

fl(m)=prP '+ (p— Dap_17P 2+ + a1,
all terms have valuations distinct mod p. Therefore

Dy (f'(m)
Hence, 2p —

) = min{dy(pr? ), 90 (p— Dag_1m® 2+ 9y (ar)}.
1> 9u(f(n) 2 p.

But by Hilbert’s formula [1, page 124, Exc. 27],

Iy (f'(m)) = Ju(diff (R/Z)) =D (| Vi | -1)
i=0

Since | V; | is a power of p, (p — 1) | 9y (f'(x)). Hence 9y (f'(7)) = 2p — 2.
And diff(R/Z) = U?"~2 (because no other prime is ramified in k). Thus the
claim is proved.
Now let m = 2.
Claim : G is cyclic.
Proof : Consider the inertia field corresponding to the prime p. In this field
p is unramified. Hence no prime is ramified in this inertia field. Hence it
must be equal to Q. Thus K is totally ramified with e(U/p) = p®. Since V;
is Sylow—p subgroup of Gal(K/Q),| Vi |=p? =| Vo | . Let V. = V,.(U/p) be
the least 7 for which | V. |< p?. But V,_1/V, — R/U = Z/pZ and hence
| V. |= p. Let H be any subgroup of G having order p. Let K be the fixed
field of H. Then [Ky : K] = p and diff(Ry/Q]) = U*~2. Hence from the
transitivity of different,

diffR/Z) = diff (R/Ry).U~2P 1, page 96, Ex.38].
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Hence diff(R/Rp) is independent of H as long as [H : Q] = p. Now by
Hilbert’s formula the power of U dividing diff(R/Ry) is given by

[e.e]
o= Z |VinH | —1.
i=0
Hence « is strictly maximized when H = V,.. Since « is independent of
H, V,. is the only subgroup of order p in GG. Thus G is cyclic, proving the
claim. Thus in case m = 1, k is unique, otherwise K K; will be of degree p?
containing two distinct subfields of degree p. Hence K is the unique subfield
of Q[(,2]. Thus the theorem is true for the case m = 1.

Now let m > 1. Let L denote the unique subfield of Q[(,m+1] of degree p™
over Q. Then Gal(L/Q) is cyclic of order p™. Then LK is cyclic by the

claim. But

Gal(LK/Q) — Gal(L/Q) x Gal(k/Q),

hence,

| Gal(LK/Q) | < lem(] Gal(L/Q) |,| Gal(K/Q) |)

m

Therefore L € LK C L and hence K C L C Q({ym+1), and the theorem
is proved in this case also.
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