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In this note we prove the well known theorem of Kronecker-Weber using
only ramification theory. The following steps are described in a series of
exercises in [1, pp. 125-127].

Kronecker-Weber Theorem.

Theorem : Every finite abelian extension of Q (field of rational numbers)
is contained in a cyclotomic field.
Proof : Let K be a finite abelian extension of Q with G = Gal(K/Q).

Step 1 : It is enough to assume that K is of degree pm over Q for some
prime p. For if G is expressed as a direct product of its Sylow subgroups :

G ∼= Sp1 × · · · × Spr ,

then fixed subfields ki (of K) with groups Spi will generate K. If ki belongs
to a cyclotomic field Fi, for i = 1, 2, · · · , r; then K ⊆ F1F2 · · ·Fr ⊆ some
cyclotomic field. Hence we assume K = k1 and [K : Q] = pm.
Step 2 : It is enough to assume that p is the only prime ramified in K.
Suppose q ∈ Z is a prime (other that p) which is ramified in K. Let E(·|·)
and e(·|·) denote the inertia group and the ramification index respectively.
Let U be a prime of K lying above q with e(U | q) = e. Now the higher
ramification group V1(U | q) is a q−subgroup of a p−group G [1, page 121].
Hence |V1(U | q)| = 1 and |V0/V1| = e. Since G is abelian |V0/V1| | (q−1) [1,
page 124, Ex. 26(c)]. This gives e|(q − 1). Now there is a (unique) subfield
K1 ⊆ Q(ζq) (where Q(ζm) denotes the m-th cyclotomic field, i.e. ζm is a
primitive m-th root of unity) with [K1 : Q] = e. Since e | pm and q 6= p, q is
tamely ramified in both K1 and K. Now q is totally ramified in Q(ζq) and
hence in K1. This gives that the ramification index of q in K1 is also e. Let
U1 be a prime of L lying above U in K. Now, Gal(K/Q) and Gal(K1/Q) are
both p-groups and since Gal(L/Q) injects into Gal(K/Q)× Gal(K1/Q), it
is also a p-group. This shows that V1(U1 | q) is both a p-group and a q-group
implying that it is trivial. Thus E(U1 | q) is cyclic. Let W be the (unique)
prime of K1 lying below U1. Hence, by restriction, E(U1 | q) injects into
E(U | q)×E(W | q). All these three groups are cyclic and the last two have
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order e each. This shows that E(U1 | q) is of order e. Thus the ramification
index of q in L is also e. Since e(U1 | q) = e(U | q) = e, e(U1 | U) = 1.
Let L1 be the inertia field of U1, i.e., L1 is the fixed field of E(U1 | q).
Then for any field F containing L1, U1 ∩ F is totally ramified in L. Thus
for F = L1K1, (U1 ∩ F ) is totally ramified in L. But F ⊃ K1 and therefore
e(U1 | (U1 ∩ F )) | e(U1 | U). This implies e(U1 | U1 ∩ F ) = 1. Thus U1 ∩ F
is totally ramified as well as unramified in L implying F = L. Hence if L1

belongs to a cyclotomic field then since K1 ⊂ Q(ζq), L will be a subfield
of a cyclotomic field. But K ⊂ L and hence K will be a subfield of some
cyclotomic field proving the theorem. Thus it is enough to replace K by
L1. But it is easy to see that all unramified primes of K are unramified in
L1 and, in addition, q is also unramified in L1 (but ramified in K). Thus
continuing this process of reduction we can assume that there are no primes
other that p which are ramified in K. This finishes the proof of step 2.

Step 3 : Case(i) p = 2, [K : Q] = 2m.
In this case 2 is totally ramified inK since otherwise no prime will be ramified
in the fixed field of E(U | 2) and this will imply, by [1,page 137, Cor.3], that
E(U | 2) = G. Thus 2 is totally ramified in K. Thus e(U | 2) = 2m. If m = 1
then [K : Q] = 2 and K = Q[

√
d] for some square-free integer d. But the

Disc(K/Q) = d or 4d. Since 2 is the only ramified prime of K, 2 is the only
possible divisor of d. Hence

K = Q[
√

2] or Q[
√
−2] or Q[

√
1].

All these fields are subfields of Q[ζ8]. Hence the theorem is proved in this
case. If m > 1 then consider L = Q(ζ2m+2) ∩ R, where R is the field
of real numbers. Then [L : Q] = 2m and L ⊂ R. Hence L contains a
unique quadratic subfield, namely Q[

√
2]. Hence Gal(L/Q) contains unique

subgroup of index 2. Thus L is a cyclic extension. Now consider the field
LK. Let µ be the extension of σ (where < σ >= Gal(L | Q) to LK. Let F be
the fixed field of µ. Since µ restricted to L generates Gal(L/Q), F ∩L = Q.
If [F : Q] > 2 then F ∩R 6= Q and it will contain Q[

√
2] ⊂ L but F ∩L = Q.

Hence [F : Q] ≤ 2. If [F : Q] = 2 then F = Q[
√
−2] or Q[i] and both are

contained in Q[ζ8]. Thus K ⊆ LK = FL ⊆ Q(ζ2m+2) and the theorem is
proved. If F = Q then < µ >= Gal(LK/Q) and since

Gal(LK/Q) ↪→ Gal(L/Q)×Gal(K/Q),

order of any element of Gal(LK/Q) ≤ lcm (| Gal (L/Q) |, | Gal (K/Q) |)
= 2m. Thus 2m ≤ [LK : Q] ≤ 2m. Hence L = LK implying K ⊆ L ⊆
Q[ζ2m+2 ]. Thus the theorem is proved in this case also.
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Case(ii) p is odd and [K : Q] = pm.
Consider the case m = 1. Hence K is of degree p over Q and p is the only
ramified prime in K. Thus if U is the prime of K lying above p then
e(U | p) = p.
Claim : diff(R/Z) = U2(p−2), where R is the ring of integers of K.
Proof : Let π ∈ U−U2 then π satisfies a monic irreducible polynomial over
Z, say,

f(x) = xp + ap−1x
p−1 + · · ·+ a0.

Let ϑU be the valuation corresponding to the DVR RU . Then ϑU (π) = 1
and since Up = pR, ϑU (p) = p. Now the coefficients ai are symmetric
polynomials in σπ, σ ∈ Gal(K/Q) and ϑU (σπ) = 1, ∀σ ∈ Gal(K/Q). Hence
ϑU (ai) ≥ 1 and hence p | ai. But a0 = ±

∏
(σπ) and hence ϑU (a0) = p. Now

in the expression

f ′(π) = pπp−1 + (p− 1)ap−1π
p−2 + · · ·+ a1,

all terms have valuations distinct mod p. Therefore

ϑU (f ′(π)) = min{ϑU (pπp−1), ϑU ((p− 1)ap−1π
p−2 · · ·ϑU (a1)}.

Hence, 2p− 1 ≥ ϑU (f ′(π)) ≥ p.

But by Hilbert’s formula [1, page 124, Exc. 27],

ϑU (f ′(π)) = ϑU (diff(R/Z)) =
∞∑
i=0

(| Vi | −1)

Since | Vi | is a power of p, (p − 1) | ϑU (f ′(π)). Hence ϑU (f ′(π)) = 2p − 2.
And diff(R/Z) = U2p−2 (because no other prime is ramified in k). Thus the
claim is proved.
Now let m = 2.
Claim : G is cyclic.
Proof : Consider the inertia field corresponding to the prime p. In this field
p is unramified. Hence no prime is ramified in this inertia field. Hence it
must be equal to Q. Thus K is totally ramified with e(U/p) = p2. Since V1

is Sylow−p subgroup of Gal(K/Q), | V1 |= p2 =| V0 | . Let Vr = Vr(U/p) be
the least r for which | Vr |< p2. But Vr−1/Vr ↪→ R/U ∼= Z/pZ and hence
| Vr |= p. Let H be any subgroup of G having order p. Let KH be the fixed
field of H. Then [KH : K] = p and diff(RH/Q]) = U2p−2. Hence from the
transitivity of different,

diffR/Z) = diff(R/RH).U (2p−2)p, [1, page 96, Ex.38].
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Hence diff(R/RH) is independent of H as long as [H : Q] = p. Now by
Hilbert’s formula the power of U dividing diff(R/RH) is given by

α =
∞∑
i=0

| Vi ∩H | −1.

Hence α is strictly maximized when H = Vr. Since α is independent of
H, Vr is the only subgroup of order p in G. Thus G is cyclic, proving the
claim. Thus in case m = 1, k is unique, otherwise KK1 will be of degree p2

containing two distinct subfields of degree p. Hence K is the unique subfield
of Q[ζp2 ]. Thus the theorem is true for the case m = 1.

Now let m > 1. Let L denote the unique subfield of Q[ζpm+1 ] of degree pm

over Q. Then Gal(L/Q) is cyclic of order pm. Then LK is cyclic by the
claim. But

Gal(LK/Q) ↪→ Gal(L/Q)×Gal(k/Q),

hence,

| Gal(LK/Q) | ≤ lcm(| Gal(L/Q) |, | Gal(K/Q) |)
= pm.

Therefore L ⊆ LK ⊆ L and hence K ⊆ L ⊆ Q(ζpm+1), and the theorem
is proved in this case also.
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